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The EPR behavior of the internal motion of the methyl fragment hindering potential compared to the temperature. A three-
in radicals is simulated using the Smoluchowski drift diffusion site exchange process has been applied to interpretation of
model. EPR stochastic Liouville lineshape calculations using this experiments at temperatures much lower than the hindering
model are presented, allowing the exploration of the whole span potential barrier (2, 4, 7, 9) . At temperatures exceeding the
of conditions between the discrete-site-exchange and the stepless- barrier, a free-diffusion Wiener–Einstein process has been
free-diffusion limits and offering a unification of these two approx-

used (10) .imate theories. An accurate value of the correlation time for the
In early theoretical work by Freed and Fraenkel (10) , theisotropic hyperfine interaction is calculated for the full ranges of

need for a model of diffusion in an external potential inthe parameters describing the system and is compared to those
this kind of problems was pointed out. The motivation forgiven by the approximate models in the two limiting cases,
developing the program described here, which employs suchallowing for a discussion of their quality. Long and short correla-

tion time limit spectra are reported and interpreted using analytic advanced diffusional models, was the possibility of modeling
models. For the isotropic hyperfine interaction studied here, no experiments over a large temperature range involving a
broadening effects are observed under Redfield (strong narrowing) methyl rotor moving in a small potential.
conditions. This suggests absence of lifetime broadening effects in A stochastic model frequently used in describing rota-
agreement with site-model results. The addition of a cos w term tional relaxation in solution or liquid state EPR (12–16) is
in the hyperfine interaction is essential for pyramidal radical cen- the Smoluchowski (17) process of diffusion in an external
tres, as is demonstrated by simulation of experimental reports in

potential. This model allows the unification of the two pre-the literature. q 1997 Academic Press
viously used models, as both the free-diffusion and the site-
exchange model are contained in it as special cases.

Consider in general a bounded hindering potential withINTRODUCTION
several local minima. The Smoluchowski model expands
into the Wiener–Einstein free-diffusion process when theThe internal motion of the -CH3 methyl fragment of a
potential barrier between the minima is greatly exceeded byvariety of radicals has over the years been subjected to nu-
the temperature. When the barrier exceeds the temperature,merous inquiries by EPR spectroscopists (1–10) . At high
the model takes the form of an effective site-jumping modeltemperatures, frequent random interaction with a reservoir at
between potential minima, with the jump rate 1/t given bythermal equilibrium has been assumed, leading to stochastic
the Arrhenius relationmodels of the dynamics (2, 4, 7, 9) . At low temperatures, a

quantum mechanical rigid-rotor model (5, 6, 8) has been
employed. EPR observable characteristics of this model dis- 1

t
} expF0 (Vmax 0 Vmin)

kT G . [1]tinguishing it from the stochastic models include mass de-
pendence (9) and quantum effects such as tunneling. Models
have been proposed that take both stochastic and determinis-

Here, Vmax and Vmin refer to the potential maxima and min-
tic effects into account (8, 11) . The present work concerns

ima, respectively. This behavior of the model has been dem-
the stochastic modeling of high-temperature experiments. In

onstrated mathematically for the case of bistable or mono-
previous inquiries, two different stationary Markovian mod-

stable potentials and particular initial conditions (18–22) .
els have been considered, depending on the strength of the

In the present work, it is observed even for periodic condi-
tions and a C3£ potential, a result obtained by analytic and
numerical methods.† To whom correspondence should be addressed.
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53THE METHYL-ROTOR ELECTRON-SPIN DYNAMICS IN THE SMOLUCHOWSKI

In the present work, the Smoluchowski process is em- The initial density operator is assumed separable in motional
and spin degrees of freedom. Assuming the stochastic vari-ployed in modeling the internal motion of the methyl group

in a radical of type R–C
g
–CH3. The EPR lineshape calcula- able is initially distributed at equilibrium, the overall FID

initial density operator is r0 Ç P0Sx , where P0 is the station-tion is achieved by incorporation of the model in the nonper-
turbative stochastic Liouville formalism introduced by Kubo ary solution to [7] .

The Fokker–Planck equation employed is the Smolu-(23) and refined by Freed (24, 25) . The effective Lanczos
algorithm (26) with reduced vector format of the complete chowski (17) equation
Liouville matrix is employed (27) .

G Å 1
j S Ì

2V

Ìw 2 /
ÌV

Ìw
Ì
Ìw

/ kT
Ì 2

Ìw 2D . [8]GENERAL THEORY

The theoretical EPR lineshapes presented in this work are
Here, V (w) is the potential energy of the rotor and j is thecalculated within the stochastic Liouville equation (SLE)
friction coefficient; j Å t /v if t is the dissipative torqueframework. The expression for the continuous wave (CW)
and v is the angular velocity of the rotor. An importantEPR lineshape is worked into the equivalent but more conve-
feature of the process, distinguishing it from the quantumnient form of the free-induction-decay (FID) (27) lineshape,
mechanical model of motion, is the independence of thewhere the initial density operator is obtained by a rotation of
moment of inertia of the rotor. However, it is a projectedthe equilibrium density p /2 about the y axis, thus rendering it
process, and the conditions for the validity of the approxima-approximately proportional to Sx at high temperatures. The
tion it constitutes are inertial dependent (28, 29) .lineshape expression is (27)

The FP operator G is not in general hermitian, but can
always be cast into hermitian form by virtue of the transfor-I(v) Å Re »S/r(v) … , [2]
mation (15)

where r(v) is the Fourier Laplace (FL) transform of the
density operator. It is obtained from the SLE (23–25) GH Å P01/2

0 GP 1/2
0 , rI (v) Å P01/2

0 r(v) ,

P0(w) Å 1
Z

e0V (w ) /kT , Z Å * e0V (w ) /kTdw. [9]Ìr( t)
Ìt

Å (0iH x / G)r( t) . [3]

The notation H x Å [ H , rrr] is used, where H is the Hamil- The transformed FP operator is
tonian. G is the Fokker–Planck (FP) operator for the sto-
chastic process employed and will be defined below. FL
transformation of [3] yields GH Å 1

j H1
2F Ì

2V

Ìw 2 0
1

2kT S ÌV

Ìw D
2G / kT

Ì 2

Ìw 2J . [10]

( iH x 0 G 0 iv)r(v) Å r(0) . [4]
Submitting the FL transformed SLE to this transformation,
and inverting and subsequently resubstituting r(v) yieldsDenoting by ÉA) , ÉB) the linear operators A , B in the Liou-

ville space with the inner product

r(v) Å P 1/2
0

1

iH x 0 GH 0 iv
P 1/2

0 r(0) . [11](AÉB) Å Tr(A/B) , [5]

the lineshape expression becomes
The lineshape expression now becomes (15)

I(v) Å ReSS0Z 1

iH x 0 G 0 iv
Zr0D . [6]

I(v) Å Re(S0P 1/2
0 Z 1

iH x 0 GH 0 iv
ZP 1/2

0 Sx) . [12]

Here, r0 Å r(0) is the initial density operator. Let P(w0Éw,
t) be the conditional probability distribution function. Then, The Hamiltonian considered here is the spin Hamiltonian of
the Fokker–Planck equation for the process is a p electron interacting with the b-position methyl group

protons. The hyperfine interaction is approximated by its
isotropic component 2a cos2w. The Hamiltonian is thenÌP(w0Éw, t)

Ìt
Å GP(w0Éw, t) . [7]

given by
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54 SØRNES AND BENETIS

The numerical methods employed for inversion are greatlyH Å v0SSz 0 ∑
1

nÅ01

v0IInz simplified if the SL operator is complex symmetric. This
can be achieved if an orthonormal basis of real functions is
used. The real Fourier series basis of sines, cosines, and a/ ∑

1

nÅ01

a

2
(e*n e i2w / ene0i2w / 2)SrIn . [13]

constant is adequate for this purpose:

Here, H 1√
p

sin(mw) É m√NJ , H 1√
p

cos(mw) É m√NJ ,
1√
2p

.

en Å e i (2p /3)n . [14]

[19]
The orientational cos2w hyperfine-interaction term has been
expanded in irreducible tensors of the symmetry group of In the following, the sines are labeled by negative and the
the operator G, C3£ (cf. Appendix A). cosines by positive values of m (cf. Appendix B).

In radicals deviating from sp 2 hybridization of the radical In order to conveniently use the lineshape expression after
center, it is found that the term a1cos w or algebraic inversion of the Liouvillean, the distribution P 1/2

0

should be expanded in the real Fourier basis. As the C3£A1

symmetry indicates, the expansion is∑
1

nÅ01

a1

2
(ene iw / e*n e0iw)SrIn [15]

e0 [V3(10cos3w ) ] /4kT Å 1√
2p

c0 / ∑
`

kÅ0

c3k
1√
p

cos(3kw) . [20]
must be added to the hyperfine coupling (30) . It will be
shown that this term is necessary in some cases to produce
correct spectra for ‘‘stopped’’ rotors. The expansion coefficients {c3k} are

It is evident from examination of the Hamiltonian that the
SLE does not couple S0 and S/ . Thus, the lineshape expres-
sion can be cast into the form of a diagonal element of the c3k Å 2

√
p

1 / dk ,0

e0V3 /4kT ∑
`

mÅ0

(V3 /8kT )2m/k

m!(m / k)!
, [21]

inverted FL-transformed stochastic Liouville matrix (SL)
suitable for direct use with the Lanczos algorithm (15) :

which can be related to the integer order associated Bessel
(32) functions Im(V3 /4kT ) :

I(v) Å ReSS0P 1/2
0 Z 1

iH x 0 GH 0 iv
ZP 1/2

0 S0D . [16]

c3m Å 2
√
pe0V3 /4kTImS V3

4kTD ,

A standard choice (11, 31) for the hindering C3 potential is

c0 Å
√
2pe0V3 /4kTI0S V3

4kTD . [22]
V (w) Å 1

2
V3{1 0 cos[3(w 0 d)]}. [17]

THE TRUNCATION PROBLEMAlthough no additional difficulty is introduced into calcula-
tions by incorporating d in treating this type of potential, an

The motional basis is, in principle, of infinite dimension.equivalent, but more convenient, method is used in the pres-
However, for most problems the lineshape expression calcu-ent work. A new angle w* r w Å w* 0 d is substituted,
lated from an increasing finite basis converges at some point,introducing the offset angle /d in the hyperfine term of the
leaving the lineshape insignificantly dependent on the re-Hamiltonian, but leaving d out of the FP operator, which
maining basis functions. The SL matrix may thus, in prac-then becomes
tice, be truncated at some finite dimension.

The problem of finding the appropriate truncation level
GH may be solved by comparing spectra calculated using an

increasing number of basis functions and checking for con-
Å 9V3

4j
cos 3w / 9V 2

3

32jkT
cos 6w vergence using a root-mean-square criterion. However, as

this is computationally time consuming, an a priori method
of finding the appropriate truncation dimension is sought. It0 9V 2

3

32jkT
/ kT

j

Ì 2

Ìw 2 . [18]
is shown below that, using real Fourier basis functions with
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55THE METHYL-ROTOR ELECTRON-SPIN DYNAMICS IN THE SMOLUCHOWSKI

increasing label number ÉmÉ (cf. Appendix B), convergence cally lowest eigenvalue was checked for convergence. The
results support the above assumption.at some point is obtained.

Three effects must be taken into account: ( i ) the expan- The effect of the hyperfine coupling term of the Hamilto-
nian must also be considered, as it introduces off-diagonalsion of the square root of the equilibrium density function
elements in the SL matrix on the same order of magnitudeP 1/2

0 ; ( ii ) the off-diagonal elements of the SL matrix intro-
as the hyperfine coupling a . Employing the above methods,duced by the hyperfine interaction; ( iii ) the off-diagonal
it is observed that the truncation level should in this caseelements of the SL matrix introduced by the potential. The
always be chosen so thatlast effect is considered first.

By inspection of the FP operator, it is observed that if the
basis function label number m is numerically large, then the

ÉmÉ @

√
a

D
. [26]real Fourier basis functions become eigenvectors of the FP

operator, with eigenvalue:

Here, D Å kT /j is the diffusion constant. To summarize,
the three criteria that all must be fulfilled for the mth basisl(0)

m Å 0 kT

j
m2 0 9V 2

3

32jkT
. [23]

function to be removed from the calculation of the lineshape
are that, first, ÉmÉ should exceed the convergence level of
the equilibrium distribution. Second, taking into account theWhen ÉmÉ is slightly smaller, so that the off-diagonal ele-
stochastic part of the SL, G, ÉmÉ should exceed V3 /kT .ments are nonvanishing, yet much smaller than the diagonal
Finally, taking into account the total SL, ÉmÉ should alsoelements, second-order perturbation theory may be used,
exceed (a /D)1/2 .giving the following correction to the eigenvalue:

The Site-Exchange Model Approximationl(2)
m

By introducing the two independent variables l Å V3 /kT
Å ∑

k (xm )

É»mÉGH Ék …É2

l(0)
m 0 l(0)

k

Å 0 81V 2
3

32jkT
and D Å kT /j, the transformed Smoluchowski operator [18]
becomes

1 S 1
4m2 0 9

/ V 2
3

256(kT )2

1
m2 0 9D . [24]

GH Å 0DS0 9
4
l cos 3w

The assumption is made that if l(2)
m /l(0)

m ! 1, then the basis
function of label m is effectively an eigenfunction of the 0 9

32
l 2cos 6w / 9

32
l 2 0 Ì 2

Ìw 2D . [27]
stochastic operator and does not mix with any other basis
vector.

The lineshape expression depends on the elements of the There are two independent parameters in the Smoluchowski
inverted SL matrix corresponding to nonvanishing compo- equation, D and l. It will be shown that the latter can be
nents of P 1/2

0 . If the expansion of P 1/2
0 converges at some pictured as the ‘‘switch’’ between two approximate stochas-

dimension k , then if ÉmÉ ú k , the basis vector m affects tic models. If l @ 1, the motion is characterized by random
the lineshape only through its coupling with k . If l(2)

m /l(0)
m jumps between potential minima, as in a site-exchange pro-

! 1 is true for m , then the coupling is weak and the lineshape cess. If l ! 1, the motion approaches that of a free-diffusion
is not affected by the removal of m from the basis. process.

Calculating with respect to orders of magnitude and as- The parameter D , which only affects the eigenvalues of
suming V3 @ kT , the criterion becomes the stochastic operator linearly and does not affect the eigen-

vectors, simply scales the time variable of these processes.
This can be observed by the rewriting [7] as

ÉmÉ @
V3

kT
. [25]

ÌP

Ì(Dt)
Å (D01G)P . [28]

These suggestions are supported by numerical investiga-
tions. It is observed that the ground state eigenvalue found
by diagonalizing the A1 block approaches zero only after a Here, (D01G) is independent of D and t .

The development of the Arrhenius expression for site ex-sufficient number of basis functions have been employed. A
numerical diagonalization of the A1 block for an increasing change from the Smoluchowski equation with potential wells

has been a problem of long-standing interest (18–22) .number of basis functions was carried out, and the numeri-
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56 SØRNES AND BENETIS

Kramers (18) employed a bistable potential with absorbing needs to be considered here, although the extension of the
procedure is trivial (34) . The three degenerate solutions arewalls. Blomberg (20) considered a double-harmonic-oscilla-

tor potential. Weaver (21) used integration techniques with thus ground state harmonic oscillators in each of the three
potential wells. Each solution can be made periodic by shift-a monostable potential with one absorbant and one reflective

boundary condition. Dattagupta (22) employed the varia- ing the argument by 2p any number of times and summing
the resulting functions. The result istional principle with a bistable potential.

In need of a theory taking into consideration periodic
boundary conditions of more than two potential wells, a

fn(w) } ∑
`

mÅ0`

e0 (1 /2)b(w02pn /3/2pm )2
, n Å 0, {1. [31]somewhat different approach is employed here. A general

expression for the conditional probability density (15) is

Note that the index n refers to the potential well in which
the wavefunction is centered. For b @ 1, [31] can be approx-P(w0Éwt) Å

√
P0(w)

P0(w0)
∑
m

G*m (w0)Gm(w)egmt , [29]
imated by the mathematically more convenient

where Gm(w) and gm are the mth eigenvector and eigenvalue
fn(w) } ebcos(w02pn /3) , n Å 0, {1. [32]

of G̃, respectively.
When l @ 1, P0 can be approximated by a Gaussian

This can be observed by second-order Taylor expansion ofrepresentation of a delta function about w Å 0 and {2p /3.
the cosine function and has been shown by Villain to beThe eigenvectors of G are negligible except in the proximity
valid by Fourier coefficient comparison (33) .of these locations. This motivates an approach widely used

It is observed that, in the approximation of harmonic oscil-(5, 11) in the study of the tunneling rate in the quantum
lator potentials, the ground state { fn} is triply degenerate.mechanical rotor model, namely, the second-order expansion
Appropriate zero-order perturbation theory eigenfunctionsof the potential about each of these locations. Fjeldsø (34)
are found by diagonalizing Ĝ in this basis. Labeling diagonalemployed the method in a problem of a supersymmetric
terms as a Å » fnÉĜ Éfn … and off-diagonal terms as V Åquantum pendulum of slightly different symmetry, but which
» fnÉĜ Éfm … , m x n , the result isis otherwise mathematically equivalent to the Smoluchowski

diffusion problem considered here.
It will be shown below that this treatment is not directly

GA Å
1√
3

( f01 / f0 / f/1) , gP A Å a / 2V,applicable for quantitatively determining jump rates, due to
the overestimation of the potential barrier height caused by
the second-order approximation of the potential around each

GEa
Å 1√

3
( f01 / e* f0 / ef/1) , gP Ea

Å a 0 V,potential well. This is also expected to be the case in the
quantum mechanical model: The harmonic oscillator func-
tions derived from a second-order potential expansion will GEb

Å 1√
3

( f01 / ef0 / e* f/1) , gP Eb
Å a 0 V . [33]

not produce correct tunneling frequencies.
In the case studied here, adjustments will be made, making

it possible to extract the exponential behavior of the jump
Here, e Å exp( i2p /3) . The ground state eigenvalue of G,

rate predicted by the Arrhenius relation (18–22) at the cost
gA, is known from theory to be zero. Requiring this, the

of the accuracy of the preexponential factor. By expanding
result is gEa,Eb

Å 0DgP Ea,Eb
Å 3V D .

cos 3f and cos 6f about locations f Å 0, {2p /3 and re-
Neglecting all larger eigenvalues from excited harmonictaining terms up to second order, the eigenvalue equation of

oscillator states, their influence on the conditional probabilityĜ Å 0D01G̃ is converted into the form of a quantum me-
being transient over the time scale of the observation, [29]chanical harmonic oscillator Hamiltonian (The constant
and [33] give09l /4, for which the only effect is an addition to the eigen-

values, has been removed from Ĝ for clarity.)
P(kÉmt) Å GA(k)GA(m) / e3VDt(GEa

(k)GEa
(m)

/ GEb
(k)GEb

(m)] , [34]GO Å 0 Ì 2

Ìw 2 / b 2Sw 0 2pn

3 D2

, n Å 0, {1. [30]

where k (and m) specify the potential well f Å 2pk /3.
Here, b Å 9

4

√
l(l / 2) . Assuming further that the fn(f Å 2pm /3) } dmn and nor-

malizing P , combining [33] and [34] givesAs will be explained below, only the smallest eigenvalue
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P(kÉmt) Å 1
3

(1 0 e03ÉV ÉDt) / e03ÉV ÉDtdkm , [35]

which is the conditional probability for a three-site exchange
process of jump rate 1/t Å ÉVÉD (39) . The overlap integral
V can be calculated from the normalized basis functions [32]
by Fourier expansion. The result is

» fmÉGO Éfn …

Å

0 9l 2

32
I6(b) / 9l

4
I3(b) 0 b 2

4
I2(b)

/ b

2
I1(b) / S9l 2

32
0 b 2

2 DI0(b)

I0(2b)
,

m x n . [36]

The asymptotic approximation

Im(b)
b@m

1√
2pb

eb

of the modified Bessel functions (32) gives

» fmÉGO Éfn … FIG. 1. The lowest nonzero eigenvalue of the Smoluchowski Fokker–
Planck operator for one-dimensional Brownian motion in a C3£ harmonic
potential. The natural logarithm of the negated eigenvalue is plotted againstÅ S0 3

4
b 2 / 1

2
b / 9

4
lD√

2e0b , m x n . [37]
the activation energy, V3 , scaled in units of absolute temperature, kT . The
eigenvalue is scaled in units of D . The plot reveals the negative exponential
behavior predicted by the Arrhenius relation (18–22) . Fitting the data to

This equation has the negative exponential form parallel to the expression a(V3 /kT ) bexp(0cV3 /kT ) resulted in the values a Å 1.430,
the Arrhenius relation (18–22) . b Å 1.191, and c Å 1.010, the error being within the resolution of the

figure. Forcing the data into the more commonly assumed (9, 18–22) ex-Using the value b É 9l /4 obtained from the original
pression a(V3 /kT )exp(0V3 /kT ) resulted in a Å 2.077, the error still beingexpansion of the harmonic terms in Ĝ, leading to [30], re-
within the resolution of the figure. The differences between each of the two

sults in a gross overestimate of the magnitude expected for fitting functions and the data are displayed in the top figure.
the exponent l. As has already been pointed out, the reason
for the failure is that the harmonic oscillator approximation
gives an overestimate of the actual barrier height.

the form of Eq. [30] is again achieved, but with an adjustedAdjusting the harmonic oscillator frequency so that the
frequency b Å 9l /p 2 . This value is rather close to theapproximated potential consists of neighboring parabolas
expected l. Assuming b É l gives the jump ratestill centered at the potential minima, but now intersecting

each other at the exact height of the actual cosine barrier,
provides a periodic C3V bounded model potential of correct 1

t
É 0V D É S3

4
l 2 0 11

4
lD√

2De0l . [38]
barrier height, although the geometry near the potential min-
ima is poorly approximated.

Two neighboring parabolas separated by 2p /3, e.g., y Å The second-order term dominating the preexponential factor
was not expected (18–22) . Therefore, numerical investiga-cw 2 and y Å c(w 0 2p /3)2 , intersect each other at the

height y Å cp 2 /9. If this approximate barrier height is set tions were made.
A logarithmic plot of the lowest nonzero eigenvalue of Ĝequal to the actual cosine potential barrier height, V3 , then

c Å 9V3 /p 2 . Retaining only terms of second order in l, and Å 0G̃ /D , i.e., 3ÉVÉ, as a function of l obtained by numeri-
cal diagonalization is shown in Fig. 1. The result was fittedinserting the parabolic potential approximation into [27],
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to an expression of the form (al / bl 2) exp(0cl) , giving
a Å 1.77, b Å 0.0780, and c Å 1.02, which is in acceptable
correspondence with the expected negative exponential be-
havior. However, the preexponential factor is not well repre-
sented by the above calculations, the most serious inconsis-
tency being the second-order l dependence in [38]. This is
to be expected due to the severe discrepancy between the
approximate and the exact potential in the regions close to
the potential minima, where the exact form of the potential
is crucial to the eigenproblem.

A fit to the more generally assumed expression (18–22)
ale0l gave a Å 2.08. The error in this fit is small enough
to be unresolved at the resolution of Fig. 1.

To summarize, it is observed that the exponential depen-
dence [1] of the jump rate on the potential height is also
valid in a C3V periodic potential of three intersecting parabo-
las, where the barrier height is considered to be the height of

FIG. 2. The cos 2w correlation time in the one dimensional Smoluchow-the intersection between neighboring parabolas. In a cosine
ski model of Brownian motion in a C3£ harmonic potential ( —), scaledpotential, [1] is observed to still hold, while the preexponen-
with the inverse diffusion constant D01 , plotted against the activation energytial factor is changed from a second-order potential depen-
scaled with absolute temperature, V3 /kT . It is compared to the correlation

dency to a first-order potential dependency. Furthermore, it time predicted by the free-diffusion model (rrr) , tc Å 1/4D , and that
is observed that employing a second-order expansion of the predicted by the jump model, tc Å 1/(0g1) , either assuming the first

nonvanishing eigenvalue to be of the Arrhenius (-r-r-r-) form (9, 18–potential about each potential minimum does not produce
22) , 0g1 Å 2.077D(V3 /kT )exp(0V3 /kT ) , the exact numerical constantsnumerically correct jump rates (or tunneling rates in the
taken from Fig. 1, or calculating the exact value of g1 numerically (---) .similar quantum-mechanical model) .

Correlation Time
of the delta function and the conditional probability into the

In the discussion below, the correlation time of the cos eigenfunctions of the FP operator G. Since 0gm } D , then
2w part (10) of the hyperfine coupling is needed, as this is

tc } D01 . Choosing the probability distribution at time t Å
the time scale of the motional averaging of the coupling. 0 to be the equilibrium distribution P0(w) and assuming real
The correlation time is in general the motional-dynamics eigenvectors gives
characterization parameter sought in relaxation and lines-
hape studies. The correlation time is calculated here for a

gm Å F*dwP 1/2
0 (w)Gm(w)g(w)G2

. [41]general choice of parameters in the Smoluchowski process
employed in this work using the following numerical proce-
dure.

By Fourier expansion of P 1/2
0 and Gm , the expression canConsider the correlation time expression for an arbitrary

be evaluated numerically. In Fig. 2, the correlation time oforientation-dependent function g[w( t)] :
cos 2w is plotted in units of D01 against l. Also shown are
curves for the more commonly employed models of free

tc Å
1
»g 2
…
*

`

0

»g(0)g( t) …dt Å (m gm(1/0gm)
(m gm

. [39] diffusion and site exchange.
As it has been shown above, the exchange rate 1/t is

given by 01/3 times the absolute value of the first nonvan-
Here, gm are the eigenvalues of the FP operator, GPm Å ishing eigenvalue g1 of the Smoluchowski operator. It can
gmPm . The numbers gm are defined according to then be shown (10) that the cos 2w correlation time is given

by 1/3t, or the inverse of 0g1 . This value is calculated
numerically and plotted in Fig. 2.gm Å * dw0P01/2

0 (w0)G*m (w0)P(w0)g(w0)
The standard procedure in employing site-exchange mod-

els (11) is, however, not to evaluate 0g1 exactly at all1 * dwP 1/2
0 (w)Gm(w)g(w) , [40]

choices of l, but rather to fit experimental spectra recorded
at a range of temperatures to exchange rates, assuming these
to be given by an Arrhenius type of relationship Ae0V3 /kTand are independent of D . It is assumed that g(w) is chosen

so that g0 Å 0. Equation [40] follows from the expansion (18–22) , where A is temperature independent. Above, the

AID JMR 1085 / 6j16$$$423 03-04-97 12:30:26 magas



59THE METHYL-ROTOR ELECTRON-SPIN DYNAMICS IN THE SMOLUCHOWSKI

exact values of 0g1 for l ú 10 were fitted to an expression on x through f Å f ( x) . The distribution P( f ) is then given
byof this type, giving A Å 2.08Dl. The error in extending this

asymptotically obtained expression into the region of l õ
10 is observed in Fig. 2. The correlation time is greatly

P( f ) Å P(x)
Ìx

Ìf
. [45]overestimated by the exchange model compared to that of

the exact Smoluchowski model.
The correlation time calculated from the free-diffusion

The transitions n are dependent on the stochastic angle w.Wiener–Einstein model (10) is 1/(4D) which is also plot-
The expected low-temperature spectrum is the distributionted in Fig. 2. Instead of approaching this value at small
of transitions P(n) . This is the sum of the distribution ofvalues of l, the reciprocal of the first nonvanishing eigen-
each individual transition.value approaches 1/D , the Wiener–Einstein operator eigen-

First, consider the case where the potential is absent, V3values in general being 0Dm2 , m Å 0, {1, {2, . . . .
! kT . Then, P(w) Å 1/(2p) . The distributions are calcu-
lated using the above formula and are observed to beLIMITING CASES

In the limit of long correlation time, i.e., small D or low
P(n1) Å 1

2p
dSÉn1É 0

3
2D ,temperature, the two cases l @ 1 and l ! 1 are considered

separately. In this limit, a ‘‘powder’’-type spectrum con-
sisting of superimposed spectra from each individual stopped
rotor in the sample is expected. P(n2) Å 1

2p
1√

(3
4 0 1

2n2)( 1
4 / 1

2n2)
, n2 √ K0 1

2
,

3
2L ,

For simplicity, consider only the hyperfine interaction in
the secular approximation, and set the hyperfine coupling
constant a equal to 1. The energy levels are P(n3) Å 1

2p
2√

1 0 (1
2 0 n3) 2

, n3 √ K0 1
2

,
3
2L ,

E Å 4ms ∑
1

nÅ01

An(w)mIn
. [42]

P(n4) Å 1
2p

2√
1 0 (1

2 0 n4) 2
, n4 √ K0 1

2
,

3
2L . [46]

where An(w) Å 1/2 cos2(w / n2p /3) . Four of the eight
EPR transitions are The distributions of the other four transitions, which are

the distributions P(0n1) to P(0n4) are also added. The
unnormalized result isn1 Å A1(w) / A01(w) / A0(w) ,

n2 Å A1(w) / A01(w) 0 A0(w) ,

P(n) Å 1√
1 0 (1

2 0 n)2
, n √ K/ 1

2
, / 3

2L ,n3 Å A1(w) 0 A01(w) / A0(w) ,

n4 Å 0A1(w) / A01(w) / A0(w) . [43]

P(n) Å 1√
1 0 (1

2 / n)2
, n √ K0 1

2
, 0 3

2L ,
The remaining four are the negative values of these. When
written in units of the hyperfine coupling constant a , the
transitions are

P(n) Å 1√
1 0 (1

2 0 n)2

n1 Å
3
2

, n2 Å
3
2
0 2 cos2w,

/ 1√
1 0 (1

2 / n)2
, n √ K0 1

2
, / 1

2L . [47]

n3 Å
1
2
0 cosS2w 0 2p

3 D ,
The spectrum calculated by using these formulas is shown
in Fig. 3a. It should be compared to the low-temperature
spectrum calculated using the SLE outlined above, which isn4 Å

1
2
0 cosS2w / 2p

3 D . [44]
shown in Fig. 3b.

It is observed that the 3b spectrum shows an approximate
3:1:1:3 ratio between the line amplitudes. However, the areaConsider a general stochastic variable x , with distribution

P(x) . Consider also another stochastic variable f dependent under each transition line is equal. Thus, by adding extra
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P(w) . Using [9, 46, 47], it is observed that (n is in units
of a) :

P(n)

Å 1√
1 0 (1

2 0 n)2
e0V3 /2kTcoshSV3

kT
n

√
3
4
0 n

2D ,

n √ K/ 1
2

, / 3
2L ,

P(n)

Å 1√
1 0 (1

2 / n)2
e0V3 /2kTcoshSV3

kT
n

√
3
4
/ n

2D ,

n √ K0 1
2

, 0 3
2L ,

P(n)

Å 1√
1 0 (1

2 0 n)2
e0V3 /2kTcoshSV3

kT
n

√
3
4
0 n

2D
FIG. 3. Calculated rigid-limit EPR absorption-frequency spectrum of a

single electron coupled to a free-diffusional methyl rotor. (a) Analytically / 1√
1 0 (1

2 / n)2
e0V3 /2kTcoshSV3

kT
n

√
3
4
/ n

2D ,
calculated powder spectrum using the secular approximation. Transition
frequency is in units of a , where the hyperfine interaction is 2a cos2w, and
the electron Zeeman frequency is set to zero. (b) Spectrum calculated
using the stochastic Liouville equation (SLE) with the Wiener–Einstein n √ K0 1

2
, / 1

2L .
stochastic-process model. The electron Zeeman frequency is 9601.6 MHz, [48]
nuclear Zeeman frequencies are standard proton values, and the hyperfine
coupling parameter a is 30 MHz. The diffusion constant, D Å kT /j, is 0.01

Because the result is nonnormalized, numerical constantsMHz. The intrinsic broadening is set to 5 MHz.
have been removed for clarity. The spectrum obtained from
using these formulas for a potential of 20kT is shown in Fig.
4a. It should be compared to the low-temperature spectrum

intrinsic broadening to model other relaxation mechanisms, obtained from the SLE lineshape calculation presented here,
the line amplitudes can be brought to a 1:1:1:1 relationship. shown in Fig. 4b.
Heller (3) reports an experimental 1:1:1:1 spectrum in x- The processes studied in this work do not broaden the
irradiated methyl malonic acid from the CH3Cg (COOH)2 rad- outer and inner lines of the commonly obtained 1:2:1:1:2:1
ical at 4.2 K. He claims an almost nonexistent potential multiplet. However, by adding an intrinsic broadening repre-
barrier in this radical. The same intensity ratio is also pre- senting relaxation due to other sources, the absorption spec-
dicted by the quantum mechanical free-rotor model at low trum shown in Fig. 4c is obtained from SLE.
temperatures (3) . The correspondence is not trivial, since In the limit of short correlation time, i.e., high tempera-
in the quantum-mechanical case, the Pauli principle for the ture, motional equilibrium is effectively maintained during
nuclei must be taken into account to produce the correct the progress of the experiment and the observed magnitudes
spectrum. Such considerations are not made in the classical of the hyperfine interactions are the averages of the {cos2(w
treatment in this work. 0 2pm /3) , mÅ 0,{1} functions in the equilibrium distribu-

Second, the case is considered where a substantial poten- tion, all equal to 1
2 regardless of potential depth. The expected

tial barrier has stopped the rotor, V3 @ kT . In this case, the spectrum of 1:3:3:1 ratio is obtained, as shown in Fig. 5.
stopped rotors reside mainly in specific orientations, which By spectrum calculations for reciprocals of correlation times
are the potential wells w Å 0, {2p /3. This situation is de- up to 10n0S , shown in Figure 6, it is observed that the spec-

trum does not possess any motional broadening whatsoeverscribed by the assumed equilibrium distribution of angles

AID JMR 1085 / 6j16$$$424 03-04-97 12:30:26 magas



61THE METHYL-ROTOR ELECTRON-SPIN DYNAMICS IN THE SMOLUCHOWSKI

FIG. 5. Calculated extreme-narrowing-limit EPR absorption spectrum
of a single electron coupled to a free-diffusional rotor. The spectrum is
calculated using the stochastic Liouville equation with the Wiener–Einstein
stochastic-process model. The electron Zeeman frequency is 9601.6 MHz,
nuclear Zeeman frequencies are standard proton values and the hyperfine
coupling parameter a is 30 MHz. The diffusion constant, D Å kT /j, is
10,000 MHz. The intrinsic broadening is set to 5 MHz.

At a fixed potential of 10 kT (l Å 10), the correlation
time is tc Å 103/D , observed from Fig. 2. The expected
size of D for maximum broadening is therefore 4 1 104

FIG. 4. Calculated rigid-limit EPR absorption spectrum of a single
electron coupled to a diffusional rotor in a 20kT C3£ harmonic potential. (a)
Analytically calculated powder spectrum using the secular approximation.
Transition frequency is in units of a , where the hyperfine interaction is 2a
cos2w, and the electron Zeeman frequency is set to zero. (b) Spectrum
calculated using the Stochastic Liouville Equation with the Smoluchowski
stochastic-process model. Electron Zeeman frequency is 9601.6 MHz, nu-
clear Zeeman frequencies are standard proton values, and the hyperfine
coupling parameter a is 30 MHz. The diffusion constant, D Å kT /j, is
0.005 MHz. The intrinsic broadening is set to 1 MHz. (c) As(b), but now
with 5 MHz intrinsic broadening and with the potential increased to 100
kT to enhance resolution. The expected 1:2:1:1:2:1 sextet is observed.

FIG. 6. Calculated EPR absorption spectra of a single electron coupled
to a free-diffusional rotor. Spectra are calculated using the stochastic Liou-when the reciprocal of the correlation time approaches and
ville equation with the Wiener–Einstein stochastic-process model. The elec-

exceeds the electron Zeeman frequency n0S . Thus, ‘‘lifetime tron Zeeman frequency is 9601.6 MHz, nuclear Zeeman frequencies are
broadening’’ effects associated with other relaxation mecha- standard proton values, and the hyperfine coupling parameter a is 40 MHz.

A range of values are chosen for the diffusion constant, giving a spectrumnisms are not observed with this model.
of correlation times surrounding a01 and the electron Zeeman frequency,As is well known (35–37) , the transition between the
n0s . It is observed that maximum broadening and breakdown of hyperfinemotionally averaged high temperature and the rigid-limit
structure occur at correlation time tc Ç a01 . It is further observed that no

low-temperature spectrum occurs around the condition t01
c broadening change is observed near the condition n01

0s Ç tc . Intrinsic broad-
Ç a , at which the inner lines of the spectrum attain maxi- ening is set to 5 MHz, and for correlation times t01

c @ 0.1n0s , this is the
only broadening observed.mum broadening.
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rotational-diffusion model (39), which results in an overall
explicit temperature dependence. Note that the friction coeffi-
cient may contain an implicit temperature dependence, as for
liquids, where the dependence is exponential (40).

Turning to the low potential limit, it is observed that the
correlation time given by the free-diffusion model is tc Å
1/(4D) . According to the above discussion, there is a linear
temperature dependence in D , as well as a possible exponen-
tial dependence. What is important is that neither the jump
model nor the first eigenvalue of the Smoluchowski FP oper-
ator is correct here. The first greatly overestimates the corre-
lation time, while the latter approaches a value four times
larger than the free-diffusion value.

FIG. 7. Calculated EPR absorption spectra of a single electron coupled to Bent Systems
a diffusional rotor in a 10kT, C3£ , harmonic potential. Spectra are calculated
using the stochastic Liouville equation with the Smoluchowski stochastic- In order to test the model on a realistic case, an experiment
process model. The electron Zeeman frequency is 9601.6 MHz, nuclear Zee- on irradiated acetic acid by Erickson et al. (9) is considered.
man frequencies are standard proton values, and the hyperfine coupling parame-

The radical observed is CH3COOD0 . For this system, previ-ter a is 40 MHz. A range of values are chosen for the diffusion constant,
ous investigations (30, 38) concluded that the radical geom-giving a spectrum of correlation times surrounding a01. It is observed that

maximum broadening and breakdown of hyperfine structure occur at correlation etry is nonplanar, so that the expression for the isotropic
time tc Ç a01. Intrinsic broadening is set to 5 MHz. hyperfine interaction must be modified (30) by adding the

term appearing in [15].
Erickson et al. report the three 77 K hyperfine couplings

MHz. In Fig. 7, spectra recorded for choices of D sur- to be 0.0, 6.0, and 32.5 G. Assuming the methyl proton
rounding this value are shown. Motional averaging is indeed dihedral angles to be separated by 1207 and assuming the
observed to occur at this value. form [13] – [15] of the hyperfine interactions, three equa-

In Fig. 6, the situation V3 Å 0 is considered, giving an tions are constructed, which are solved for the common hy-
expected correlation time of 1/(4D) . The motion is then perfine coupling parameters a , a1 , and the offset angle d,
free diffusion. As for the previous case, the spectra still giving a Å 12.8 G, a1 Å 8.06 G, and d Å 1087. Fitting the
reveal maximum broadening around the condition t01

c Ç a . data to the regular Heller–McConnell-type expression [13]
The inner pair of lines is merged to a single broad line under and [14], with only zero- and second-order terms, results in
this condition. anomalous values of the parameters. In particular, a must

be large and negative or a substantial and negative zero-
DISCUSSION order constant a0 must be included.

Using the above calculated values in the lineshape simula-
Temperature Dependence of the Correlation Time tion algorithm described in this work, the 77, 112, 132, and

the 152 K spectra shown in Fig. 8 were obtained. TheyThe present work suggests that there is a complicated
should be compared to experimental spectra along with therelation between the correlation time and the temperature.
potential of V3 Å 2.2 kcal/mol given by Ericksson et al. (9)In a wide experimental temperature range, it is possible that
using a three site-exchange model, reported in the originalusing only one of the limiting models is insufficient to de-
paper. The experimental results were successfully simulatedscribe the correct temperature dependence. In the relatively
by the value of the potential found by Erickson et al., show-‘‘small,’’ but practically significant, region 0.32 õ V3 /kT õ
ing that the site-exchange model is a good approximation.5.62, (Fig. 2) , neither of the two approximate models, i.e.,
However, the present theory provides a more fundamentalthe stepless diffusion or the jump model may be applied. As
description of the structure and the dynamics by offeringan example, for a potential of 200 K, this corresponds to a
an interpretation of the empirical parameters used in thetemperature range of 35.6 up to 625 K.
Arrhenius equation and in the diffusional limit.In the jump-rate limit, the relation A Å 2.08DV3/kT for the

Arrhenius preexponential factor is obtained. If D Å kT/j is
CONCLUSIONSinserted, it is observed that there is no explicit temperature

dependence left. The preexponential factor is, in general, depen-
dent on the number of degrees of freedom of the motion, It is observed that in the SLE formulation of the EPR

lineshape from an unpaired electron spin coupled to a methylgiving for example A Å D(V3/kT )3/2 for a three-dimensional
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APPENDIX A: SYMMETRY CONSIDERATIONS

The symmetry group of the stochastic operator is C3£ .
This includes the C3 rotations 0 and {2p /3, as well as the
parity operator P f (w) Å f (0w) Å g(w) , which also is the
reflection operator about the line w Å 0. The reflections
about w Å {2p /3 are the combinations of the remaining
two C3 rotations with the reflection operator.

There are three representations, A1 , A2 , and E , of which
the last is two-dimensional. As a representation of the sub-
group C3 , both A1 and A2 are identified with the symmetric
representation of C3 , A1 . The E representation of C3£ can be
reduced to the Ea ! Eb representation of C3 .

Using projection operators, the components of a general
complex Fourier basis function transforming as the basis of
the irreducible representations are found. The basis for the
A1 representation is 1/

√
2p < {(1/

√
p)cos 3mwÉm √ N},FIG. 8. Calculated EPR derivative magnetic field spectra of the radical

CH3COOD0 in irradiated acetic acid-d1 at 77, 112, 132, and 152 K using for the A2 it is {(1/
√
p)sin 3mwÉm √ N}, while it for E is

the stochastic Liouville equation with the Smoluchowski-process model. {(1/
√
p)cos[(3m { 1)w]Ém √ N} < {(1/

√
p)sin[(3m {

The activation energy used is 2.2 kcal/mol after Erickson et al. (9) , and
1)w]Ém √ N}.the friction parameter is chosen as j Å 40 to give optimal correspondence

A high degree of approximate degeneracy will occur be-with experimental results (9) . The electron Zeeman frequency was 9601.6
tween A1 and A2 levels as the representation matrices differMHz, and the hyperfine coupling expression (30) 2a cos2(w / d) /

a1cos(w / d) , with a Å 12.83 G, a1 Å 8.057 G, and d Å 108.37, was used. only by six elements; denoting by index 0, the constant
1/

√
2p and indexing other basisfunctions by the integer m ,

they are the (0, 0) , (0, 1) , (0, 2) , (1, 0) , (2, 0) , and (1,
rotor, the Smoluchowski process of Brownian motion in 1) elements.
an external potential offers a unification of the previously
employed processes, i.e., the site-exchange and the stepless- APPENDIX B: BASIS TRANSFORMATIONS
free-diffusion models.

The cos 2w correlation time, on which motional averaging The real Fourier basis, which is employed, is not as conve-
and linewidths are strongly dependent, is poorly represented nient for practical calculations as the complex Fourier basis.
by the extension of the free-diffusion model to low tempera- The real Fourier basis can be related to the complex basis
tures compared to the potential. Likewise, the extension of by the general formula
a site-exchange model into conditions of high temperature
compared to the potential is inconsistent with the correlation

cm Å
1

2
√
pam

(e imw / ame0imw),time as calculated from the Smoluchowski model.
This work shows that quantitative calculations of the jump

rate based on second-order expansion of the cosine potential am Å e i[ (3 /2)zm/ (1 /2) ]p ,
are erroneous due to the overestimation of the actual barrier
height. Numerically, the regular expression for the jump
rate of the Arrhenius type [1] (18–22) is found, with a zm Å

1, m ú 0

01, m õ 0

0, m Å 0

. [49]
preexponential factor of approximately 2.08 DV3 /kT .

It is seen that the maximum broadening of inner lines
when t01

c Ç a in the free-diffusion case is accompanied by
The cosine basis function are labeled here by m ú 0, whilethe breakdown of the inner doublet. We have not found
the sine basis functions are labeled by m õ 0.experimental reports in the literature supporting this observa-

The SL operator can be transformed to this basis from thetion.
complex basis by virtue ofEven though the nonsecular terms of the Hamiltonian are

included, no lifetime broadening effects (41) are observed
LRF Å RLCBR/ . [50]for the high-field simulations of this work, in agreement with

the regular behavior of exchange of isotropic systems within
the simpler lineshape models of site exchange and within Here, LRF and LCB refer to the real and complex bases, respec-

tively, and R is given bythe Redfield relaxation theory.
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